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Abstract
Under selective pressure from the host immune system, antigenic epitopes of influenza

virus hemagglutinin (HA) have continually evolved to escape antibody recognition, termed

antigenic drift. We analyzed the genomes of influenza A(H3N2) and A(H1N1)pdm09 virus

strains circulating in Thailand between 2010 and 2014 and assessed how well the yearly

vaccine strains recommended for the southern hemisphere matched them. We amplified

and sequenced the HA gene of 120 A(H3N2) and 81 A(H1N1)pdm09 influenza virus sam-

ples obtained from respiratory specimens and calculated the perfect-match vaccine efficacy

using the pepitope model, which quantitated the antigenic drift in the dominant epitope of HA.

Phylogenetic analysis of the A(H3N2) HA1 genes classified most strains into genetic clades

1, 3A, 3B, and 3C. The A(H3N2) strains from the 2013 and 2014 seasons showed very low

to moderate vaccine efficacy and demonstrated antigenic drift from epitopes C and A to epi-

tope B. Meanwhile, most A(H1N1)pdm09 strains from the 2012–2014 seasons belonged to

genetic clades 6A, 6B, and 6C and displayed the dominant epitope mutations at epitopes B

and E. Finally, the vaccine efficacy for A(H1N1)pdm09 (79.6–93.4%) was generally higher

than that of A(H3N2). These findings further confirmed the accelerating antigenic drift of the

circulating influenza A(H3N2) in recent years.

Introduction
Influenza A virus is a major cause of acute respiratory disease in humans and is responsible
for ~250,000–500,000 deaths annually worldwide [1]. Pandemic influenza A virus infection
resulted in significant morbidity and mortality in 1918 (H1N1), 1957 (H2N2), 1968 (H3N2),
and 2009 (H1N1) [2]. Subtypes of influenza A viruses are defined by the surface proteins hem-
agglutinin (HA) and neuraminidase, two major viral targets for the host immune system [3].
The HA protein of the influenza virus is cleaved by the protease enzyme in the host cells into
two subunits: HA1 and HA2. The HA1 subunit plays a major role in binding to host receptor
or neutralizing antibodies and represents major antigenic sites (defined as epitopes A, B, C, D,
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and E). In contrast, the HA2 subunit induces fusion of the viral envelope and endosomal host
membrane [4]. The accumulation of amino acid mutations on the antigenic sites of HA1
reduces antibody recognition and drives antigenic drift [5–8].

The yearly updated trivalent influenza vaccine consists of inactivated virus with HA from
types A(H1N1)pdm09 and A(H3N2), and one type B that best match the predicted circulating
strains. Due to the high mutation rate of the influenza virus, however, typical vaccine efficacies
are only around 50–60%, while complete protection against influenza-like illness is rarely
achieved. An epidemiological study conducted in Thailand demonstrated an influenza vaccine
efficacy among vaccinated children of 55–64% [9]. Therefore, epidemiological studies examin-
ing how antigenic drifts affect vaccine efficacy are required for an optimal vaccine design each
flu season.

Towards assessing the influenza antigenic drift, differences between the vaccine strain and
the circulating strain are quantified by the number of amino acid changes in the dominant epi-
tope, a region on the HA1 protein recognized by the neutralizing antibodies. This pepitope
model has been used to estimate the antigenic distance for influenza virus and was shown to
correlate with the vaccine efficacy to a greater degree than phylogenetic analyses or antisera
hemagglutination inhibition assay [10]. To better understand the molecular evolution of influ-
enza and assess how genetic drift affected vaccine efficacy, we examined the antigenic epitopes
of HA1 of influenza A(H3N2) and A(H1N1)pdm09 circulating in Thailand from 2010 to 2014.

Materials and Methods

Specimen collection and preparation
Respiratory samples were obtained from Thai patients with influenza-like symptoms by the
Center of Excellence in Clinical Virology at Chulalongkorn University. The inclusion criteria
were fever (> 38°C) combined with respiratory symptoms such as cough, sore throat and
runny nose. A total of 18,018 samples, collected from January 2010 to December 2014 in Thai-
land, were screened for influenza A and B virus by one-step multiplex real-time polymerase
chain reaction (RT-PCR) and subtypes H1 and H3 were identified by specific primers as previ-
ously described [11, 12]. Part of the surveillance data has been previously reported [13, 14].
Samples tested positive for seasonal influenza A (H1 and H3) were then randomly selected for
HA gene analysis.

All samples were stored anonymously and acquired with permission from the Director of
King Chulalongkorn Memorial Hospital. The study protocol was approved by the Institutional
Review Board, Faculty of Medicine, Chulalongkorn University (IRB No. 337/57) and the need
for consent was waived because the samples were anonymous. This study was conducted
according to the principles expressed in the Declaration of Helsinki and the IRB waived the
need for consent because the samples were de-identified and anonymous.

Nucleic acid extraction, PCR, and sequencing
Viral RNA was extracted using a commercial viral nucleic acid extraction kit (RBC Bioscience,
New Taipei City, Taiwan) according to the manufacturer’s instructions. Viral RNA was tran-
scribed into cDNA using the ImProm-II reverse transcription system (Promega, Madison, WI)
and 1 μM universal 12 primers [11]. The HA sequences were amplified by PCR with the primer
sets for human influenza A(H3N2) and A(H1N1)pdm09 virus (S1 Table). Briefly, a total reac-
tion volume of 25 μl contained 10 μl of 2.5x mastermix (5Prime, Hamburg, Germany), 0.25
mMMgCl2, 0.5 μM each of forward and reverse primers, 2 μl of cDNA template and RNase-
free H2O. The PCR parameters were 94°C for 3 minutes, followed by a total of 40 cycles of
94°C for 30 seconds, 55°C for 30 seconds, 72°C for 90 seconds, and 72°C for 7 minutes. PCR
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products were visualized on a 2% agarose gel and purified using the HiYield gel DNA fragment
extraction kit (RBC Bioscience, New Taipei City, Taiwan). DNA sequencing was performed by
First BASE Laboratories Sdn Bhd (Selangor, Malaysia).

Nucleotide sequence accession numbers
The HA sequences of influenza A(H3N2) and A(H1N1)pdm09 obtained in the 2010 season in
Thailand had previously been deposited in GenBank (S2 Table), while the HA sequences of
the influenza A(H3N2) (in 2011–2014) and A(H1N1)pdm09 (in 2011–2014) isolates were
submitted to GenBank under accession numbers KP335865 to KP335981 and KP941680 to
KP941741, respectively. Moreover, the HA sequences of reference and southern hemisphere
vaccine strains from influenza A(H3N2) and A(H1N1)pdm09 viruses included in phylogenetic
analysis were obtained from the GenBank and GISAID databases. Their accession numbers
were also included in the S2 Table.

Phylogenetic analysis and antigenic characterization
The HA sequences were edited and assembled using SeqManPro (DNASTAR, Madison, WI).
The ClustalX v.2.1 was used for the alignment of protein and nucleotide sequences [15]. The
Akaike information criterion and maximum likelihood value indicated that the HKY+G model
was the best fit model [16]. A phylogenetic tree of the HA1 coding nucleotide sequences was
generated by Molecular Evolutionary Genetic Analysis (MEGA) version 6.06 [17] using a max-
imum likelihood tree by the HKY+G model with 1,000 bootstrap replicates; only bootstrap val-
ues over 50 were shown. The amino acid residues in the five epitopes (A—E) of A(H3N2)
(A/Aichi/2/1968) and A(H1N1)pdm09 (A/California/04/2009) viruses were previously identi-
fied [18, 19]. The relative amino acid frequency in the epitope of HA1 was performed using
WebLogo [20].

Measurement of selection pressure
The selective pressure on encoding HA1 A(H3N2) and A(H1N1)pdm09 was examined by cal-
culating the ratio of synonymous and non-synonymous substitutions (dN/dS, defined as ω)
across lineage on a codon-by-codon basis. The individual site-specific selection pressure and ω
were estimated using the single likelihood ancestor counting (SLAC) and fixed effects likeli-
hood (FEL) methods contained in the HYPHY package [21]. All analyses utilized the Data-
monkey online tool (http://www.datamonkey.org). The value of ω was estimated based on the
neighbor-joining trees under the HKY85 substitution model. The significance level for a posi-
tively selected site by either SLAC/FEL or both methods was accepted at 0.1.

Prediction of glycosylation sites
The NetNGlyc 1.0 server was used to predict potential N-linked glycosylation sites (amino
acids Asn-X-Ser/Thr, whereby X is any amino acid except Asp or Pro) [22]. A threshold value
of>0.5 for the average potential score suggests glycosylation.

Estimation of vaccine efficacy using the pepitope model
We estimated the vaccine efficacy of the influenza A(H3N2) and A(H1N1)pdm09 seasonal
influenza viruses using the pepitope method [7, 23–25]. Since the vaccine efficacy is linearly cor-
related with the antigenic distance between the vaccine strain and the dominant circulating
strains, the antigenic distance, defined as pepitope, is calculated by the fraction of amino acid
substitutions in the dominant HA epitope [10]. The association between vaccine efficacy and
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pepitope is given by E = −2.47 × pepitope + 0.47 for influenza A(H3N2) virus and by E = −1.19 ×
pepitope + 0.53 for influenza A(H1N1)pdm09 virus [23]. The influenza A(H3N2) vaccine effi-
cacy with pepitope = 0 is 47% as a perfect match between vaccine and virus [10]. For the influ-
enza A(H1N1)pdm09 virus, the vaccine efficacy is 53% when pepitope = 0 [23].

Results

Phylogenetic analysis of A(H3N2)
Among the 18,018 respiratory samples of unknown etiology, 673 samples (3.7%) tested positive
for influenza B and 3,034 samples (16.8%) tested positive for influenza A. The latter comprised
1,394 (46%) A(H3N2) and 1,640 (54%) A(H1N1)pdm09. From these, random selection
resulted in the analysis of the HA gene from 120 A(H3N2) and 81 A(H1N1)pdm09 samples.

Comparison of the HA gene was performed on the A(H3N2) strains circulating during the
2010 (N = 3), 2011 (N = 24), 2012 (N = 16), 2013 (N = 41), and 2014 (N = 36) seasons and
sequences from the southern hemisphere vaccine and reference strains. Phylogenetic analysis
of the HA1 sequence showed that A(H3N2) strains from the 2010 season belonged to genetic
clade 1 and shared amino acid substitutions at P162S, I260M, and R261Q (Fig 1). These 2010
strains clustered with A/Perth/16/2009, the reference vaccine strain for 2010, 2011, and 2012
(99.2% nucleotide and 98.9% amino acid identities). Meanwhile, the strains from the 2011 and
2012 seasons belonged to genetic clade 3 (3A, 3B, 3C.1, and 3C.2) and shared amino acid sub-
stitutions at N145S and V223I. Most strains (57.5%) belonged to sub-clade 3C.1 as defined by
Q33R and N278K when compared to A/Victoria/361/2011, a vaccine strain for 2013 (S3
Table). The A(H3N2) strains from the 2013 and 2014 seasons grouped into clades 3C.2 and
3C.3. Most sub-clade 3C.2 strains (N = 66, 85.7%) possessed N145S and V186G compared to
the A/Victoria/361/2011, the reference vaccine strain for 2013. In contrast, sub-clade 3C.3 was
characterized by T128A, A138S, R142G, and F159S compared to A/Victoria/361/2011 (vaccine
strain for 2013) and A/Texas/50/2012 (vaccine strain for 2014).

The overall HA1 nucleotide identities among the A(H3N2) strains compared to the given
vaccine strains over the period examined were>97%, while the amino acid identities were
>96% (Table 1). The nucleotide and amino acid similarities between A(H3N2) strains from
the 2011 and 2012 seasons and A/Perth/16/2009 were>97.6 and>96.3%, respectively. Mean-
while, the nucleotide and amino acid similarities between the 2013 strains and A/Victoria/361/
2011 were 98.7% and 97.7%, respectively. The A(H3N2) strains in 2014 were closely related to
A/Texas/50/2012 (98.2% nucleotide and 96.9% amino acid identities).

Phylogenetic analysis of A(H1N1)pdm09
To assess the evolution of the A(H1N1)pdm09 during the same period, circulating strains in
2010 (N = 18), 2011 (N = 7), 2012 (N = 5), 2013 (N = 7), and 2014 (N = 44) seasons were also
compared to the vaccine and reference sequences (Fig 2). There were distinct phylogenetic
groups of A(H1N1)pdm09 strains between 2010 to 2014. Among the A(H1N1)pdm09 strains,
69% belonged to clade 6 viruses, while 31% grouped into clades 1, 4, 5, and 7. The HA1
sequence of A(H1N1)pdm09 viruses isolated in the 2013–2014 season clustered in genetic
clades 6B and 6C. Although both sub-clades were related to the A/California/07/2009 vaccine
strain (recommended every year since 2010) and shared> 98.2% nucleotide and> 97.4%
amino acid sequence homology, they were slightly different from A/California/07/2009 in that
they shared D97N and S185T substitutions (S4 Table). Moreover, sub-clade 6B possessed addi-
tional K163Q, K283E, and A256T substitutions, while clade 6C possessed V234I, M257V, and
K283E substitutions. No changes were observed in the A(H1N1)pdm09 at residues Y98, T133,
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Fig 1. Phylogenetic analysis of HA1 nucleotide sequences of influenza A(H3N2). Sequences from 120
strains isolated in Thailand during 2010–2014 (designated A/Thailand/CU) were compared to the reference
strains of known clades reported byWHO Influenza Center London (bolded) and the southern hemisphere
vaccine strains recommended byWHO (denoted with triangles). The phylogenetic tree was generated by the
maximum likelihood method using HKY+Gmodel with 1,000 bootstrap replicates implemented in MEGA
(version 6.06). Branch values >50 are indicated at the nodes. The signature amino acid changes to each
clade are indicated in different colors by epitopes (A through E). CHO denotes site-specific glycosylation.
Scale bar represents approximately 0.2% nucleotide difference between close relatives.

doi:10.1371/journal.pone.0139958.g001
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W150, H180, and Q223, which are conserved and important in the HA receptor binding
pocket of the influenza virus [26].

Antigenic characterization
The receptor binding site (RBS) on the HA comprised several highly conserved amino acid res-
idues (Y98, T133, W150, H180, and Q223; numbered according to HA1). Residues at the ter-
minal sialic acid receptor binding sites (RBSs) of all A(H3N2) strains were I226 and S228,
while all A(H1N1)pdm09 strains possessed D204 (numbered according to HA0). Additionally,
differences in the residues on the A(H3N2) and A(H1N1)pdm09 HA protein were located on
the antigenic sites, which comprised epitopes A to E (S3 and S4 Tables). We summarized the
relative frequencies of the residues found on the dominant epitope domain on the HA1 of A
(H3N2) and A(H1N1)pdm09 (Fig 3). Overall, the A(H3N2) strains displayed more diversity
from the accumulated epitope mutations than the A(H1N1)pdm09 strains.

Selection pressure on A(H3N2) and A(H1N1)pdm09
Assuming that the influenza HA protein is subjected to selection pressure in order to evade the
host cell recognition, the rate of change was assessed by the ω values in which ω< 1 meant that
negative or purifying selection was present, ω = 1 when selection pressure was neutral, and ω
>1 when there was positive selection [27]. Analysis showed that the overall ω values of the cod-
ing HA1 regions of A(H3N2) and A(H1N1)pdm09 were 0.34 and 0.31, respectively. Since the
majority of residues in the HA1 domain showed ω< 1, this suggested that the amino acids in
the HA epitope domain were under purifying selection. Although overall positive selection
was not present, specific sites of positive selection were found using SLAC and FEL methods
(Table 2). Among the 329 codons in the HA1 domain of the A(H3N2) circulating strains,
SLAC showed that only codon 33 (Q/R) was a positively selected site (ω = 3.78, P = 0.04). FEL
identified codons 33 (Q/R), 144 (K/N/D/S), and 198 (A/S) as positively selected sites (ω =
8.02 × 1014, P = 0.02; infinity, P = 0.09; and 34.5 × 1014, P = 0.07; respectively). For A(H1N1)
pdm09 strains, only one codon 197 (A/T) was a positively selected site (ω = 8.21 × 1014,
P = 0.08) as shown by FEL.

Table 1. Comparison of influenza A(H3N2) nucleotide and amino acid similarities between the vaccine and the circulating Thai strains.

% identity of HA1

Year Clade No. of strain Vaccine strain Nucleotide Amino acid

2010 1 3 A/Perth/16/2009 (clade 1) 99.2 98.9

2011 3A 1 A/Perth/16/2009 97.9 96.8

(N = 24) 3B 6

3C.1 17

2012 3A 1 A/Perth/16/2009 97.6 96.3

(N = 16) 3B 2

3C.1 6

3C.2 7

2013 3C.2 37 A/Victoria/361/2011 (clade 3C.1) 98.7 97.7

(N = 41) 3C.3 4

2014 3C.2 29 A/Texas/50/2012 (clade 3C.1) 98.2 96.9

(N = 36) 3C.3 7

doi:10.1371/journal.pone.0139958.t001
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Fig 2. Phylogenetic analysis of the HA1 nucleotide sequences of influenza A(H1N1)pdm09. Sequences
from 81 strains isolated in Thailand between 2010 and 2014 (designated A/Thailand/CU) were compared to
the reference strains of known clades reported byWHO Influenza Center London (bolded) and the southern
hemisphere vaccine strains recommended byWHO (denoted with triangles). Phylogenic tree was generated
using maximum likelihood method by HKY+Gmodel. Bootstrap values of 1,000 replicates >50 are indicated
at the nodes. Also at the nodes are the signature amino acid changes in different colors according to
epitopes. Scale bar represents approximately 0.2% nucleotide difference between close relatives.

doi:10.1371/journal.pone.0139958.g002
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Fig 3. Frequency of amino acid residues found on epitopes A through E in the HA1 protein of
influenza virus identified in Thailand during 2010–2014.Residue positions along the x-axis for (A)
influenza A(H3N2) are based on the A/Perth/16/2009 strain and (B) influenza A(H1N1)pdm09 on the A/
California/07/2009. Relative frequency of the amino acid residue at a given position is proportional to the
residue height. Residues were colored according to their chemical properties. Polar residues (G, S, T, Y, and
C) are green; basic polar residues (K, R, and H) are blue; acidic polar residues (D and E) are red; amide polar
residues (Q and N) are purple; and hydrophobic residues (A, V, L, I, P, W, F, and M) are black. Graphics were
generated usingWebLogo3.

doi:10.1371/journal.pone.0139958.g003

Table 2. Positively selected sites on HA1 of influenza A virus among the Thai strains between 2010 and 2014.

SLAC FEL

Subtype position dN/dSa Normalized dN/dS P-valueb position dN/dSa Normalized dN/dS P-valueb

H3N2 33 3.78 11.14 0.04 33 8.02×1014 16.3 0.02

144 Infinity 11 0.09

198 34.5×1014 11.5 0.07

H1N1 pdm 09 N/D - - - 197 8.21×1014 46.83 0.08

SLAC, single likelihood ancestor counting; FEL, fixed effects likelihood; N/D, not detected.
a dN/dS or ω is the ratio of synonymous to non-synonymous substitutions.
b P-value from the SLAC and FEL results for positive selection level.

doi:10.1371/journal.pone.0139958.t002
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Prediction of glycosylation sites
Ten potential glycosylation sites on the HA1 of A(H3N2) clades 1 and 3A strains were identified
at amino acid positions 8, 22, 38, 63, 122, 126, 133, 165, 244, and 285. The K144N substitution
occurred in clades 3B and 3C.1 strains, resulting in an increase in the number of glycosylation
sites. The S45N substitution appeared in clades 3C.1 and 3C.2 strains, contributing to an
increase in the number of glycosylation sites. Loss of a glycosylation site occurred in clade 3C.3
strains due to T128A mutation. The majority of A(H1N1)pdm09 strains possessed 6 potential
glycosylation sites in the HA1 domain at amino acid positions 10, 11, 23, 87, 276, and 287,
which were present in all but clade 6A. The mutation at N11S among clade 6A strains resulted
in a loss of potential glycosylation site at this position. We did not find the D222Gmutation
commonly associated with increased virulence.

Estimation of vaccine efficacy for A(H3N2) and A(H1N1)pdm09
To assess the effect of the accumulated mutations on the HA1 domain on the vaccine efficacy
in a given year, the pepitope method was used to evaluate how closely the vaccine strain resem-
bled the circulating strain (Table 3). Theoretically, when pepitope in the dominant epitope is
higher than 0.19, the vaccine efficacy becomes negative [10]. For 2010, the pepitope between A
(H3N2) strains and the A/Perth/16/2009 vaccine strain was 0.045 (epitope E; mutation 261),
which suggested a worst-case vaccine efficacy against these strains of 75.96% (E = 35.7% of
47%, pepitope = 0). For the 2011 and 2012 seasons, HA1 sequences showed antigenic drifts
mainly on epitopes A and C (S1 Fig). The pepitope of 0.148 (dominant epitope = C substitutions
45, 48, 278, and 312) suggested a worst-case vaccine efficacy against these strains of 22.1%
(E = 10.4% of 47%, pepitope = 0) of that of a perfect match with the A/Perth/16/2009 vaccine
strain. Consequently, vaccine efficacy declined by more than half. For 2013, pepitope of 0.095
from 30 strains (dominant epitope = B mutations 156 and 186) suggested a worst-case vaccine
efficacy against these strains of 49.9% (E = 23.4% of 47%, pepitope = 0) of that of a perfect match
with the A/Victoria/361/2011 vaccine strain. For 2014, the HA1 sequences mostly had a domi-
nant mutation in epitope B (128, 159, 186, and 198) and the pepitope of 0.191 with respect to A/
Texas/50/2012 vaccine strain, suggesting that the latter poorly matched the multiple circulating
strains present that year. The 2015 vaccine strain A/Switzerland/9715293/2013, which belongs
to clade 3C.3, was also examined for its ability to match the A(H3N2) strains of the same clade
circulating in 2014. The resulting pepitope value of 0.052 gave an estimated worst-case vaccine
efficacy against strains of 72.3%. However, clade 3C.2 strains of A(H3N2) in 2014 and A/Swit-
zerland/9715293/2013 showed a value of> 0.19, indicating a negative vaccine efficacy against
these strains.

In contrast, comparison between the A(H1N1)pdm09 strains circulating between 2010–
2014 and A/California/07/2009 vaccine strain yielded the pepitope of 0.045. This was attributed
to an amino acid substitution at 185 on the dominant epitope B (S2 Fig) and suggested a worst-
case vaccine efficacy against these strains of 89.7% (E = 47.6% of 53%, pepitope = 0) of that of a
perfect match with the vaccine strain (Table 4). In all, 12.3% of the strains obtained between
2010–2014 (10/81) possessed dominant mutation in epitope E at position 83, which gave an
estimated worst-case vaccine efficacy against the virus of 93.4% (E = 49.5% of 53%, pepitope = 0)
of a perfect match with the vaccine strain. In summary, HA1 sequences of A(H1N1)pdm09
from recent years showed antigenic changes mainly on epitope B and one or two amino acid
mutations on other epitopes. Taken together, these results suggested that the past and current
vaccine provided optimal protection against A(H1N1)pdm09 strains that circulated in
Thailand.
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Table 3. Efficacy among the vaccine strains and number of mutations found on the dominant epitope of influenza A(H3N2) circulating in Thailand.

Year Vaccine strain No. of
strain

Dominant
epitope

No. of
mutation

pepitope Efficacy Vaccine efficacy
(47%)

Vaccine efficacy
(100%)

2010 A/Perth/16/2009 2 E 1 0.0455 0.3577 35.77 75.96

(N = 3) 1 A 1 0.0526 0.3400 34.00 72.34

2011 A/Perth/16/2009 6 A 2 0.1053 0.2100 21.00 44.68

(N = 24) 14 C 4 0.1481 0.1041 10.41 22.14

4 A 3 0.1579 0.0800 8.00 17.02

2012 A/Perth/16/2009 3 A 2 0.1053 0.2100 21.00 44.68

(N = 16) 11 C 4 0.1481 0.1041 10.41 22.14

2 A 3 0.1579 0.0800 8.00 17.02

2013 A/Victoria/361/2011 30 B 2 0.0952 0.2348 23.48 49.95

(N = 41) 2 A 2 0.1053 0.2100 21.00 44.68

3 C 3 0.1111 0.1956 19.56 41.61

4 B 3 0.1429 0.1171 11.71 24.92

1 A 3 0.1579 0.0800 8.00 17.02

1 B 4 0.1905 −0.0005 −0.05 −0.10

2014 A/Texas/50/2012 1 B 2 0.0952 0.2348 23.48 49.95

(N = 36) 8 B 3 0.1429 0.1171 11.71 24.92

17 B 4 0.1905 −0.0005 −0.05 −0.10

9 B 5 0.2381 −0.1181 −11.81 −25.13

1 A 7 0.3684 −0.4400 −44.00 −93.62

A/Switzerland/9715293/
2013

6 A 1 0.0526 0.3400 34.00 72.34

1 B 2 0.0952 0.2348 23.48 49.95

8 A 3 0.1579 0.0800 8.00 17.02

1 B 4 0.1905 −0.0005 −0.05 −0.10

14 A 4 0.2105 −0.0500 −5.00 −10.64

4 B 5 0.2381 −0.1181 −11.81 −25.13

1 A 5 0.2632 −0.1800 −18.00 −38.30

1 A 11 0.5263 −0.8300 −83.00 −176.60

doi:10.1371/journal.pone.0139958.t003

Table 4. Vaccine efficacy and number of mutations in dominant epitope of influenza A(H1N1)pdm09 circulating in Thailand compared with A/Cali-
fornia/07/2009 vaccine strain.

Year No. of strain Dominant epitope No. of mutations pepitope Efficacy Vaccine efficacy (53%) Vaccine efficacy (100%)

2010 11 B 1 0.0455 0.4759 47.59 89.79

(N = 18) 1 C 2 0.0606 0.4579 45.79 86.39

6 E 1 0.0294 0.4950 49.50 93.40

2011 2 A 2 0.0833 0.4308 43.08 81.29

(N = 7) 3 B 1 0.0455 0.4759 47.59 89.79

1 B 2 0.0909 0.4218 42.18 79.59

1 E 1 0.0294 0.4950 49.50 93.40

2012 5 B 1 0.0455 0.4759 47.59 89.79

2013 3 B 1 0.0455 0.4759 47.59 89.79

(N = 7) 1 C 2 0.0606 0.4579 45.79 86.39

3 E 2 0.0588 0.4600 46.00 86.79

2014 44 B 1 0.0455 0.4759 47.59 89.79

doi:10.1371/journal.pone.0139958.t004
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Discussion
Since its emergence in 1968, influenza A(H3N2) strain has been the predominant circulating
influenza subtype between 2011 and 2014 [28]. In contrast, the A(H1N1) subtype was first doc-
umented in Thailand in May 2009 and continued to circulate until 2010. Although the (H1N1)
pdm09-like A/California/7/2009 has remained the recommended vaccine strain for the past
several years, we identified changes on the HA1 of A(H1N1)pdm09 Thai strains belonging to
epitopes B (S185T) and E (P83S). Additional observed changes at residues 97 (D97N) and 197
(A197T) previously implicated in the adaptive mutation or immune escape continued to persist
(71% and 18%, respectively) [29]. In this study, the vaccine efficacy for A(H1N1)pdm09 strains
of 79.6–93.4% was higher than that for the A(H3N2). This is concordant with previous studies,
which estimated the vaccine efficacy using serologically based methods and suggested a moder-
ate to high vaccine effectiveness for influenza A(H1N1)pdm09 during the 2010–2014 seasons
[30, 31].

We found that influenza clusters on the phylogenetic tree is mostly chronological. The influ-
enza A(H3N2) strains found in Thailand belonging to at least two phylogenetic sub-clades (1
and 3), which co-circulated between 2011 and 2014. During the 2010 season, only strains in
clade 1 were identified. In 2011–2012, A(H3N2) sub-clade 3C strains appeared. Accumulated
amino acid variations on epitope C in the HA1 domain allowed it to drift away from the A/
Perth/16/2009-like strain (the vaccine strain of 2010, 2011, and 2012 seasons). As a result, the
vaccine strain was changed to the A/Victoria/361/2011-like strain for 2013 season. However,
all A(H3N2) strains circulated in 2013 and 2014 seasons belonged to the new emerging sub-
clades 3C.2 (A/Hong Kong/146/2013-like strain) and 3C.3 (A/Samara/73/2013-like strain),
which were different from the sub-clade 3C.1 A/Victoria/361/2011 and A/Texas/50/2012
strains used for the vaccines in those years. This was consistent with the pepitope >0.19 obtained
from the analysis, which revealed high antigenic drift and subsequently resulted in negative
vaccine efficacy.

Genetic evolution of influenza virus appears gradual, but antigenic changes were found to
occur more abruptly [32]. For example, one single amino acid substitution in the case of
N145K on the HA1 of A(H3N2) can characterize the difference between clades. It is also
known that the antigenic variation of H3 occurs more frequently than H1. The average amino
acid substitution rate of the HA protein is 3.6 per year for A(H3N2) and 2.45 per year for A
(H1N1) [32–33]. One reason may be that more individuals are susceptible to the relatively
novel A(H1N1)pdm09 strain, and therefore the weaker immnue pressure has resulted in the
slow rate of the viral evolution.

New influenza variants are thought to drift considerably from the parental strain when they
displayed four or more amino acid mutations on at least two epitope domains on the HA1 pro-
tein [34]. Alternatively, antigenic drift variants can result from a change in the antigenic site in
combination with a mutation in the RBS, which interacts with the sialic acid on the cell surface
[35]. We found that the HA1 sequences from the A(H3N2) strains during the 2011–2012 sea-
son possessed seven amino acid changes on four epitopes including epitope C (S45N, T48I,
N278K, and N312S), epitope B (A198S), epitope D (V223I), and Q33R. In the 2013–2014 sea-
sons, antigenic drift also occurred due to at least four amino acid mutations on epitope B com-
bined with additional mutations on epitope A (R142G), epitope B (T128A), and epitope C
(N278K). It is noteworthy that T128A had previously been observed in Fujian strain, which
was associated with high mortality rate in children [36].

Further analysis of the HA1 from A(H3N2) strains revealed three positively selected codons
(33, 144, and 198), suggesting that these sites were immune-escaped mutants. The N144D sub-
stitution was not unique to the strains found in Thailand as it was observed among isolates in
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Europe and Africa during 2010–2011 [37]. The resulting glycosylation at position 144 was
previously implicated in the antigenic change in A/Fujian/411/02-like strains from the 2002–
2003 seasons [38]. Compared to A/Perth/16/2009, two amino acid mutations involving
A128T and N45S could effectively alter the glycosylation pattern, providing evolutionary
advantage to the virus including more effective masking of viral epitopes, stabilization of poly-
meric HA structures, regulation of the receptor binding domain, and balancing the binding
activity of HA with the release activity of neuraminidase [39]. This was evident when it was
observed that the loss of the glycosylation site at 128 of HA1 was associated with loss of anti-
body recognition [40].

The vaccine efficacy between A/Perth/16/2009 vaccine strain and A(H3N2) strains circu-
lated in Thailand in 2010 of 75.96% is consistent with a moderate vaccine efficacy reported for
the trivalent inactivated influenza vaccines in 2010–2011 in Thailand [41] and a moderate pro-
tection against subtype-specific A/H3 reported in the U.S. [42]. During the 2011–2012 seasons,
the dominant epitope change from A to C relative to the A/Perth/16/2009 subsequently
resulted in a decline in the percentage of perfect-match vaccine efficacy (44.6% and 22.1%,
respectively). Furthermore, the antigenic sites of the circulating A(H3N2) strains in 2013 and
2014 drifted from epitope C to B compared to the vaccine strains. In 2013, the reference vac-
cine strain had to be changed from A/Perth/16/2009 to A/Victoria/361/2011, which appeared
to moderately improve the perfect-match vaccine efficacy (49.9%). This was consistent with
the results from an epidemiological cohort study showing vaccine efficacy in the 2011–2012
(55%) and 2012–2013 (64%) seasons among Thai children [9]. Meanwhile, the vaccine strain
chosen in 2014 (A/Texas/50/2012-like) did not improve the perfect-match vaccine efficacy,
which was fairly low (approximately 24.9%). Moreover, the pepitope values for the majority of
the HA1 sequences in 2014 (75%) was> 0.19 [10] and, therefore, the vaccine efficacy became
negative. This has occurred in the past whereby the outbreak of the Sydney/5/79 strain yielded
the value of pepitope of 0.238; hence, the vaccine efficacy was −17% compared with the 1997–
1998 northern hemisphere influenza vaccine [43]. Taken together, the emergence of multiple
circulating strains in 2014 contributed to the reduced vaccine efficacy in Thailand that year
and was reflected in the weekly morbidity and mortality report from the U. S. Centers for Dis-
ease Control and Prevention, which suggested that the 2014–15 influenza vaccine strain A/
Texas/50/2012 was essentially ineffective against the circulating A(H3N2) strains [44].

There are several limitations in this study. Since there is no general consensus on the epitope
regions for A(H1N1)pdm09, we estimated the antigenic drift and vaccine efficacy based on the
mutation of the dominant epitope by mapping epitopes A-E fromH3 onto the pandemic A/Cal-
ifornia/04/2009 strain. Our results therefore require validation using alternative models with
differently defined epitope regions [45–46]. The greater number of A(H3N2) strains analyzed in
this study may have contributed to more mutations observed on the epitope domains of the A
(H3N2) than the A(H1N1). Finally, the assessment of vaccine efficacy relied on the comparison
of the circulating influenza strains to the vaccine strains chosen annually, therefore this mea-
surement is not absolute as antigenic diversity have not always been predictive of the vaccine
effectiveness. In conclusion, continued influenza surveillance, molecular evolution analysis, and
antigenic distance measurement of the dominant influenza A strains in circulation will help
refine the interpretation of vaccine efficacy and improve the yearly influenza vaccine.
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